
Transaction Control Language (TCL)

Database Design

Department of Computer Engineering

Sharif University of Technology

Maryam Ramezani maryam.ramezani@sharif.edu

mailto:maryam.ramezani@sharif.edu

2

❑ A transaction is the DBMS’s abstract view of a user program: a sequence of

reads and writes.

❑ Concurrent execution of user programs is essential for good DBMS

performance.
○ Increasing system throughput (# of completed transactions in any given time) by

overlapping I/O and CPU operations

○ Increasing response time (time for completing a transaction) by avoiding short

transactions getting stuck behind long ones

❑ A user’s program may carry out many (in-memory) operations on the data

retrieved from the database, but the DBMS is only concerned about what data

is read/written from/to the database.

Transactions

3

❑ Atomicity: Either all actions of the transactions are executed

or none at all.

❑ Consistency: Any transaction that starts executing in a

consistent database state must leave it in a consistent state

upon completion.

❑ Isolation: A transaction is protected from effects of

concurrently running transactions.

❑ Durability: Effects of committed transactions must persist and

overcome any system failure (system crash/media failure).

REVIEW: The ACID Properties (in a Nutshell)

4

❑ Users submit transactions, and can think of each transaction as executing by

itself.
○ Concurrency is achieved by the DBMS, which interleaves actions (reads/writes of

DB objects) of various transactions. The net effect is the same as serially

executing the transactions one after the other.

○ Each transaction must leave the database in a consistent state if the DB is

consistent when the transaction begins.

▪ DBMS will enforce some ICs, depending on the ICs declared in CREATE

TABLE statements.

▪ Beyond this, the DBMS does not really understand the semantics of the

data. (e.g., it does not understand how the interest on a bank account is

computed).

❑ Issue: Coping with effects of interleaving transactions (Concurrency control).

Consistency and Isolation

5

❑ A transaction might commit after completing all its actions,
or it could terminate unsuccessfully:
○ It could abort (or be aborted by the DBMS) after executing some actions.
○ The system may crash while transactions are in progress.

❑ How does the DBMS achieve atomicity and durability of all
transactions?
○ Atomicity: the DBMS logs all actions so that it can undo the actions of

aborted transactions.
○ Durability: committed actions are written to disk or (in case of a crash) the

system must redo actions of committed Xacts which were not yet written
to disk.

❑ Issue: Coping with effects of crashes (Recovery).

Atomicity and Durability

6

❑ Transactions give you more flexibility and control when
changing data, and they ensure data consistency in the
event of user process failure or system failure.

❑ A database transaction consists of one of the following:
○ DML statements which constitute one consistent change to the data

▪ For example, a transfer of funds between two accounts should include

the debit to one account and the credit to another account in the

same amount. Both actions should either fail or succeed together; the

credit should not be committed without the debit.

○ One DDL statement

○ One DCL statement

Database Transactions

7

When Does a Transaction Start and End?

A transaction begins when the first DML statement is encountered and ends when

one of the following occurs:
○ A COMMIT or ROLLBACK statement is issued

○ A DDL statement, such as CREATE, is issued

○ A DCL statement is issued

○ A machine fails or the system crashes

○ After one transaction ends, the next executable SQL statement automatically starts the next

transaction.

○ A DDL statement or a DCL statement is automatically committed and therefore implicitly ends a

transaction.

Database Transactions

8

With COMMIT and ROLLBACK statements, you can:

❑ Ensure data consistency

❑ Preview data changes before making changes permanent

❑ Group logically related operations

Advantages of COMMIT and ROLLBACK Statements

9

Controlling Transactions

SAVEPOINT B

SAVEPOINT A

DELETE

INSERT

UPDATE

INSERT

COMMITTime

Transaction

ROLLBACK

to SAVEPOINT B

ROLLBACK

to SAVEPOINT A
ROLLBACK

10

UPDATE...

SAVEPOINT update_done;

Savepoint created.

INSERT...

ROLLBACK TO update_done;

Rollback complete.

❑ Create a marker in a current transaction by using the SAVEPOINT statement.

❑ Roll back to that marker by using the ROLLBACK TO SAVEPOINT statement.

❑ If you create a second savepoint with the same name as an earlier savepoint,

the earlier savepoint is deleted.

Rolling Back Changes to a Marker

11

❑ An automatic commit occurs under the following circumstances:
○ DDL statement is issued

○ DCL statement is issued

○ Normal exit, without explicitly issuing COMMIT or ROLLBACK statements

❑ An automatic rollback occurs under an abnormal termination of query or a

system failure.

Implicit Transaction Processing

12

❑ The previous state of the data can be recovered.

❑ The current user can review the results of the DML operations by using the

SELECT statement.

❑ Other users cannot view the results of the DML statements by the current

user.

❑ The affected rows are locked; other users cannot change the data within the

affected rows.

State of the Data Before COMMIT or ROLLBACK

13

❑ Data changes are made permanent in the database.

❑ The previous state of the data is permanently lost.

❑ All users can view the results.

❑ Locks on the affected rows are released; those rows are available for other

users to manipulate.

❑ All savepoints are erased.

State of the Data after COMMIT

14

COMMIT;

Commit complete.

❑ Make the changes.

❑ Commit the changes.

Committing Data

DELETE FROM employees

WHERE employee_id = 99999;

1 row deleted.

INSERT INTO departments

VALUES (290, 'Corporate Tax', NULL, 1700);

1 row inserted.

15

Discard all pending changes by using the ROLLBACK

statement:

❑ Data changes are undone.

❑ Previous state of the data is restored.

❑ Locks on the affected rows are released.

State of the Data After ROLLBACK

DELETE FROM copy_emp;

22 rows deleted.

ROLLBACK;

Rollback complete.

16

❑ Read consistency guarantees a consistent view of the data

at all times.

❑ Changes made by one user do not conflict with changes

made by another user.

❑ Read consistency ensures that on the same data:
○ Readers do not wait for writers.

○ Writers do not wait for readers.

Read Consistency

17

SELECT *

FROM userA.employees;

Implementation of Read Consistency

UPDATE employees

SET salary = 7000

WHERE last_name = 'Goyal';

Data

blocks

Rollback

segments

changed
and
unchanged
data

before

change

“old” data

User A

User B

Read

consistent

image

18

❑ Implementation of Read Consistency
○ Read consistency is an automatic implementation. It keeps a partial copy of the

database in undo segments.
○ When an insert, update, or delete operation is made to the database, the Oracle

server takes a copy of the data before it is changed and writes it to a undo segment.
○ All readers, except the one who issued the change, still see the database as it

existed before the changes started; they view the rollback segment’s “snapshot” of
the data.

○ Before changes are committed to the database, only the user who is modifying the
data sees the database with the alterations; everyone else sees the snapshot in the
undo segment. This guarantees that readers of the data read consistent data that is
not currently undergoing change.

○ When a DML statement is committed, the change made to the database becomes
visible to anyone executing a SELECT statement. The space occupied by the old
data in the undo segment file is freed for reuse.

○ If the transaction is rolled back, the changes are undone:
▪ The original, older version, of the data in the undo segment is written back to

the table.
▪ All users see the database as it existed before the transaction began.

Implementation of Read Consistency

CE384: Database Design Maryam Ramezani

19

Locks are mechanisms that prevent destructive interaction between transactions

accessing the same resource, either a user object (such as tables or rows) or a

system object not visible to users (such as shared data structures and data

dictionary rows).

In an Oracle database, locks:

❑ Prevent destructive interaction between concurrent transactions

❑ Require no user action

❑ Automatically use the lowest level of restrictiveness

❑ Are held for the duration of the transaction

❑ Are of two types: explicit locking (The users can also lock data manually, which

is called explicit locking) and implicit locking

Locking

20

❑ High level of data concurrency:
○ DML: Table share, row exclusive
○ Queries: No locks required
○ DDL: Protects object definitions: DDL locks occur when you modify a database object such as a table.

❑ Two lock modes:
○ Exclusive: Locks out other users: An exclusive lock is acquired automatically for each row

modified by a DML statement. Exclusive locks prevent the row from being changed by other
transactions until the transaction is committed or rolled back. This lock ensures that no other
user can modify the same row at the same time and overwrite changes not yet committed by
another user.

○ Share: Allows other users to access: A share lock is automatically obtained at the table level
during DML operations. With share lock mode, several transactions can acquire share locks on
the same resource.

❑ Locks held until commit or rollback

Implicit Locking

21

Summary

Description

Makes all pending changes permanent

Is used to rollback to the savepoint marker

Discards all pending data changes

Statement

COMMIT

SAVEPOINT

ROLLBACK

	Slide 1: Transaction Control Language (TCL)
	Slide 2: Transactions
	Slide 3: REVIEW: The ACID Properties (in a Nutshell)
	Slide 4: Consistency and Isolation
	Slide 5: Atomicity and Durability
	Slide 6: Database Transactions
	Slide 7: Database Transactions
	Slide 8: Advantages of COMMIT and ROLLBACK Statements
	Slide 9: Controlling Transactions
	Slide 10: Rolling Back Changes to a Marker
	Slide 11: Implicit Transaction Processing
	Slide 12: State of the Data Before COMMIT or ROLLBACK
	Slide 13: State of the Data after COMMIT
	Slide 14: Committing Data
	Slide 15: State of the Data After ROLLBACK
	Slide 16: Read Consistency
	Slide 17: Implementation of Read Consistency
	Slide 18: Implementation of Read Consistency
	Slide 19: Locking
	Slide 20: Implicit Locking
	Slide 21: Summary

